Source code for braket.ir.jaqcd.shared_models

# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
#     http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.

from typing import Dict, Optional, Union

from pydantic import BaseModel, confloat, conint, conlist, constr, root_validator


[docs]class SingleTarget(BaseModel): """ Single target index. Attributes: target (int): The target index. This is an int >= 0. Examples: >>> SingleTarget(target=0) """ target: conint(ge=0)
[docs]class DoubleTarget(BaseModel): """ Target indices of length 2. Attributes: targets (List[int]): A list with two items and all items are int >= 0. Examples: >>> DoubleTarget(targets=[0, 1]) """ targets: conlist(conint(ge=0), min_items=2, max_items=2)
[docs]class MultiTarget(BaseModel): """ Variable length target indices. Attributes: targets (List[int]): A list with items that are all int >= 0. Examples: >>> MultiTarget(targets=[0, 1]) """ targets: conlist(conint(ge=0), min_items=1)
[docs]class OptionalMultiTarget(BaseModel): """ Optional variable length target indices Attributes: targets (Optional[List[int]]): A list with items that are all int >= 0. Examples: >>> OptionalMultiTarget(targets=[0, 1]) """ targets: Optional[conlist(conint(ge=0), min_items=1)]
[docs]class MultiControl(BaseModel): """ Variable length control indices. Attributes: controls (List[int]): A list with at least two items and all items are int >= 0. Examples: >>> MultiControl(controls=[0, 1]) """ controls: conlist(conint(ge=0), min_items=1)
[docs]class DoubleControl(BaseModel): """ Control indices of length 2. Attributes: controls (List[int]): A list with two items and all items are int >= 0. Examples: >>> DoubleControl(targets=[0, 1]) """ controls: conlist(conint(ge=0), min_items=2, max_items=2)
[docs]class SingleControl(BaseModel): """ Single control index. Attributes: control (int): The control index. This is an int >= 0. Examples: >>> SingleControl(control=0) """ control: conint(ge=0)
[docs]class Angle(BaseModel): """ Single angle in radians (floating point). Attributes: angle (float): The angle in radians. inf, -inf, and NaN are not allowable inputs. Examples: >>> Angle(angle=0.15) """ angle: confloat(gt=float("-inf"), lt=float("inf"))
[docs]class SingleProbability(BaseModel): """ A single probability parameter for bit/phase flip noise channel. The probability range is [0,0.5] to make the channel meaningful. Attributes: probability (float): The probability for noise channel. NaN is not an allowable input. Examples: >>> SingleProbability(probability=0.1) """ probability: confloat(ge=float("0.0"), le=float("0.5"))
[docs]class SingleProbability_34(BaseModel): """ A single probability parameter for depolarizing/two-qubit-dephasing noise channel. The probability range is [0,3/4], as the channel is fully mixing at p = 3/4. Attributes: probability (float): The probability for noise channel. NaN is not an allowable input. Examples: >>> SingleProbability_34(probability=0.5) """ probability: confloat(ge=float("0.0"), le=float("0.75"))
[docs]class SingleProbability_1516(BaseModel): """ A single probability parameter for two-qubit-depolarizing noise channel. The probability range is [0,15/16], as the channel is fully mixing at p = 15/16. Attributes: probability (float): The probability for noise channel. NaN is not an allowable input. Examples: >>> SingleProbability_1516(probability=0.1) """ probability: confloat(ge=float("0.0"), le=float("0.9375"))
[docs]class DampingProbability(BaseModel): """ The parameter for the amplitude/phase damping channel Attributes: gamma (float): The probability of damping Examples: >>> DampingProbability(gamma=0.1) """ gamma: confloat(ge=float("0.0"), le=float("1.0"))
[docs]class DampingSingleProbability(BaseModel): """ The parameter for the generalized amplitude damping channel Attributes: gamma (float): The probability of damping Examples: >>> DampingSingleProbability(probability=0.1) """ probability: confloat(ge=float("0.0"), le=float("1.0"))
[docs]class TripleProbability(BaseModel): """ A triple-probability parameter set for the Pauli noise channel. Attributes: probX (float), probY (float), probZ (float): The coefficients of the Pauli channel Examples: >>> TripleProbability(probX=0.1, probY=0.2, probZ=0.3) """ probX: confloat(ge=float("0.0"), le=float("1.0")) probY: confloat(ge=float("0.0"), le=float("1.0")) probZ: confloat(ge=float("0.0"), le=float("1.0"))
[docs] @root_validator def validate_probabilities(cls, values): """ Pydantic uses the validation subsystem to create objects. This custom validator has the purpose to ensure probX + probY + probZ <= 1. """ p1, p2, p3 = values.get("probX"), values.get("probY"), values.get("probZ") if p1 + p2 + p3 > 1: raise ValueError("Sum of probabilities cannot exceed 1.") return values
[docs]class MultiProbability(BaseModel): """A multi-value-probability parameter set for the Pauli noise channel. Attributes: probabilities [Dict[str, float]]: The coefficients of the Pauli channel Examples: >>> MultiProbability(probabilities={"X": 0.1}) >>> MultiProbability(probabilities={"XY": 0.1, "YX": 0.01}) """ probabilities: Dict[ constr(regex="^[IXYZ]+$", min_length=1), confloat(ge=float("0.0"), le=float("1.0")) ]
[docs] @root_validator def validate_probabilities(cls, values): """ Pydantic uses the validation subsystem to create objects. This custom validator has the purpose to ensure sum(probabilities) <= 1 and that the lengths of each Pauli string are equal. """ probabilities = values.get("probabilities") if not probabilities: raise ValueError("Pauli dictionary must not be empty.") qubit_count = len(list(probabilities)[0]) if qubit_count * "I" in probabilities.keys(): i = qubit_count * "I" raise ValueError( f"{i} is not allowed as a key. Please enter only non-identity Pauli strings." ) for pauli_string, prob in probabilities.items(): if len(pauli_string) != qubit_count: raise ValueError("Length of each Pauli string must be equal to number of qubits.") total_prob = sum(probabilities.values()) if total_prob > 1.0 or total_prob < 0.0: raise ValueError( f"Total probability must be a real number in the interval [0, 1]. Total probability was {total_prob}." # noqa: E501 ) return values
[docs]class TwoDimensionalMatrix(BaseModel): """ Two-dimensional non-empty matrix. Attributes: matrix (List[List[List[float]]]): Two-dimensional matrix with complex entries. Each complex number is represented using a List[float] of size 2, with element[0] being the real part and element[1] imaginary. inf, -inf, and NaN are not allowable inputs for the element. Examples: >>> TwoDimensionalMatrix(matrix=[[[0, 0], [1, 0]], [[1, 0], [0, 0]]]) """ matrix: conlist( conlist( conlist(confloat(gt=float("-inf"), lt=float("inf")), min_items=2, max_items=2), min_items=1, ), min_items=1, )
[docs]class TwoDimensionalMatrixList(BaseModel): """ List of two-dimensional non-empty matrices. Attributes: matrix (List[List[List[List[float]]]]): Two-dimensional matrix with complex entries. Each complex number is represented using a List[float] of size 2, with element[0] being the real part and element[1] imaginary. inf, -inf, and NaN are not allowable inputs for the element. The number of matrices is limited to 16 and the size of each matrix is limited to 4*4. Examples: >>> TwoDimensionalMatrixList(matrices=[[[[1, 0], [0, 0]], [[0, 0], [1, 0]]], [[[0, 0], [1, 0]], [[1, 0], [0, 0]]] ] ) """ matrices: conlist( conlist( conlist( conlist(confloat(gt=float("-inf"), lt=float("inf")), min_items=2, max_items=2), min_items=1, max_items=4, ), min_items=1, max_items=4, ), min_items=1, max_items=16, )
[docs]class Observable(BaseModel): """ An observable. If given list is more than one element, this is the tensor product of each operator in the list. Attributes: observable (List[Union[str, List[List[List[float]]]]): A list with at least one item and items are strings matching the observable regex or a two-dimensional hermitian matrix with complex entries. Each complex number is represented using a List[float] of size 2, with element[0] being the real part and element[1] imaginary. inf, -inf, and NaN are not allowable inputs for the element. Examples: >>> Observable(observable=["x"]) >>> Observable(observable=[[[0, 0], [1, 0]], [[1, 0], [0, 0]]]) """ observable: conlist( Union[ constr(regex="(x|y|z|h|i)"), conlist( conlist( conlist(confloat(gt=float("-inf"), lt=float("inf")), min_items=2, max_items=2), min_items=2, ), min_items=2, ), ], min_items=1, )
[docs]class MultiState(BaseModel): """ A list of states in bitstring form. Attributes: states (List[string]): Variable length list with all strings matching the state regex Examples: >>> lMultiState(states=["10", "10"]) """ states: conlist(constr(regex="^[01]+$", min_length=1), min_items=1)
[docs]class CompilerDirective(BaseModel): """ A Compiler Directive to preserve a block of code between StartVerbatimBlock and EndVerbatimBlock directives. Attributes: directive (List [StartVerbatimBlock | EndVerbatimBlock]) Examples: >>> CompilerDirective (directive="StartVerbatimBlock") >>> CompilerDirective (directive="EndVerbatimBlock") """ directive: constr(regex="^(Start|End)VerbatimBlock$")